MA 242 : Partial Differential Equations (August-December, 2018)

A. K. Nandakumaran, Department of Mathematics, IISc, Bangalore

Problem set 2 and QUIZ 2

Submit to me on or before September 17, 2018 by 1 p.m.

1. Consider the minimization problem from calculus of variation:

$$
\min \int_{t}^{\tau}\left(1+\frac{1}{4} \dot{x}(s)^{2}\right) d s, \quad t \in[0,1],
$$

over a suitable class of functions, say Lipschitz Functions. Here τ is the exit time of $(s, x(s))$ from the region $[0,1] \times[-1,1]$. Define $L(v):=L(t, x, v)=1+\frac{1}{4} v^{2}$, where v is any scalar. Let $x($.$) be the trajectory with the initial value x(t)=x$, then the value function is defined as

$$
u(t, x)=\min \left\{\int_{t}^{\tau} L(t, x(s), \dot{x}(s)) d s, x(.) \text { Lipschitz }\right\} .
$$

Show that u is given by

$$
u(t, x)=\min _{v}\{(\tau-t) L(v)\},
$$

where the minimization over reals. Further show that

$$
v^{*}=\left\{\begin{array}{rl}
2 & \text { if } \\
0 \geq t \\
0 & \text { if } \\
-2 & \text { if } \\
x \leq-t
\end{array},\right.
$$

is a minimizing solution and the corresponding value is given by

$$
u(t, x)=\left\{\begin{array}{lll}
1-|x| & \text { if } & |x| \geq t \\
1-t & \text { if } & |x| \leq t
\end{array}\right.
$$

Find the differentiable region and show u satisfies the following Hamilton-Jacobi equation wherever it is differentiable:

$$
-u_{t}(t, x)+\left(u_{x}(t, x)\right)^{2}-1=0,
$$

and satisfies conditions

$$
u(t, 1)=u(t,-1)=0, t \in[0,1] ; u(1, x)=0, x \in[-1,1] .
$$

2. a) Consider a Lagrangian $L(q)=1+\frac{1}{4}|q|^{2}, q \in \mathbb{R}^{n}$ and derive the Hamiltonian via the Legendre transformation.
b) Now define the minimal value

$$
u(x, t)=\min \left[\int_{0}^{t}\left(1+\frac{1}{4} \dot{w}(s)^{2}\right) d s+\frac{1}{2} w(0)^{2}\right]
$$

where the minimum is taken over all smooth trajectories w satisfying $w(t)=x$. Using HopeLax formula find u explicitly, write down Hamilton Jacobi equation, show that u satisfies HJE and find the initial condition.
3. Consider the Burger's equation $u_{t}+u u_{x}=0$ for $x \in \mathbb{R}, t>0$ with the initial condition $u(x, 0)=u_{0}(x)$, where is u_{0} is given by

$$
u_{0}(x)=\left\{\begin{array}{lll}
1 & \text { if } & x \leq 0 \\
1-x & \text { if } & 0 \leq x \leq 1 \\
0 & \text { if } & x \geq 1
\end{array}\right.
$$

a) Show that the characteristic curves do not meet till $t=1$ by constructing it, draw the characteristics and solve the problem for $u(x, t)$ for all $x \in \mathbb{R}$ and $0<t<1$.
b) Construct a curve of discontinuity $s(t)$ for $t \geq 1$ with $s(1)=1$, define a discontinuous solution $u(x, t)$ for all $x<s(t), x>s(t)$ and $1 \leq t$ that satisfies Rankin-Hugnoit condition.

